MM2S Data

Contains normalized expression data for Human and Mouse Medulloblastoma models

Description: Molecular subtyping is instrumental towards selection of model systems for fundamental research in tumor pathogenesis, and clinical patient assessment. Medulloblastoma (MB) is a highly heterogeneous, malignant brain tumor that is the most common cause of cancer-related deaths in children. Current MB classification schemes require large sample sizes, and standard reference samples, for subtype predictions. Such approaches are impractical in clinical settings with limited tumor biopsies, and unsuitable for model system predictions where standard reference samples are unavailable. Our developed Medullo-Model To Subtype (MM2S) classifier stratifies single MB gene expression profiles without reference samples or replicates. Our pathway-centric approach facilitates subtype predictions of patient samples, and model systems including cell lines and mouse models. MM2S demonstrates >96% accuracy for patients of well-characterized normal cerebellum, WNT, or SHH subtypes, and the less-characterized Group 4 (86%) and Group 3 (78.2%). MM2S also enables classification of MB cell lines and mouse models into their human counterparts.
Authors: Deena M.A. Gendoo, Benjamin Haibe-Kains
Lab: Haibe-Kains
Year: 2015
Keywords:

Citation

Citation not available.

132 samples

Sample Type:N/A
Species:Human, Mouse
Datatype:N/A
Technology:Array

Contact

This dataset is public.

Contact: Benjamin Haibe-Kains

Contact email: Email